Email updates

Keep up to date with the latest news and content from Geochemical Transactions and Chemistry Central.

Open Access Open Badges Research article

Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions

Yeqing Lan1, Baolin Deng2*, Chulsung Kim3 and Edward C Thornton4

Author Affiliations

1 College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China

2 Dept. of Civil and Environmental Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA

3 Dept. Environmental Science, University of Dubuque, Dubuque, IA 52001, USA

4 Field Hydrology and Chemistry Group, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, USA

For all author emails, please log on.

Geochemical Transactions 2007, 8:4  doi:10.1186/1467-4866-8-4

Published: 12 April 2007


The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, kobs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was:

-d[Cr(VI)]/dt = kobs[H+]2[Cr(VI)][HS-]0.70